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Variation analysis of turbulence resistance and angular
spreading for partially coherent beam in turbulence
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A new factor M is proposed to characterize the similarity of the behavior of a partially coherent beam
(PCB) to its coherent counterpart when propagating through atmospheric turbulence. It is shown that
there exists a boundary in the range of the source coherent length. The decreasing rates of free space
angular spreading and of turbulence distance with the source coherent length are different before and after
the coherent length arriving at the boundary value, by which the change trend of M can be concluded.
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It is well known that partially coherent beam (PCB)
is less sensitive to the effects of turbulence than fully
coherent ones[1−8]. Among those works, Gbur et al.
gave the generalized expression for spreading of PCBs
in atmosphere[4]. Their results have shown that PCB
has a larger free space angular spreading θS in addition
to its robust turbulence resistance that is characterized
by turbulence distance zT. For PCB, the longer zT and
the smaller θS are desired for applications. However, it
seems that both parameters of θS and zT have the same
change trend with the variation of the source coherence,
which makes one hard to obtain the desired beam. To
trade-off zT and θS, one firstly should determine change
trends of zT and θS along with the variation of the source
coherent length σμ.

In this letter we introduce a factor M to describe the
similarity of the behavior of PCB to its coherent laser
counterpart. It can also be used to evaluate the trends
of variations of the two parameters with increasing σμ.
We find that there exists a boundary in the curve of M .
Both the changes of zT and θS differ in their velocities
before and after the value of M arrives at the boundary.

We consider a quasi-monochromatic field propagating
from the source plane z = 0 into the turbulent half-space
z > 0. By using the paraxial approximate form of the
extended Huygens-Fresnel principle[9,10], the field at a
given plane can be expressed as

U(ρ, z) = − ik exp(ikz)
2πz

∫∫
U0(ρ0) exp[ik

(ρ − ρ0)2

2z
]

× exp[ψ(ρ,ρ0, z)]d2ρ0, (1)

where U0(ρ0) denotes the incident field at the source
plane and U(ρ, z) is the filed at a given z plane (z > 0).
The quantity ψ(ρ,ρ0, z) denotes a phase function that
depends on the atmosphere turbulence and k = 2π/λ is
the wave number. It is assumed that the source is sta-
tistically stationary and the medium is statistically ho-
mogenous and isotropic. Then the spectral density of the

beam can be given by[5]

I(ρ, z) = 〈U∗(ρ, z)U(ρ, z)〉

= (
k

2πz
)2

∫∫
d2ρ0

∫∫
d2ρ′0〈U∗

0 (ρ0)U(ρ′
0)〉

× exp
[
−ik (ρ− ρ0)2 − (ρ − ρ′

0)
2

2z

]

×〈exp[ψ∗(ρ,ρ0, z) + ψ(ρ,ρ′
0, z)]〉, (2)

where the two angle brackets on the right side represent
the averages over the filed ensemble and over the en-
semble of the turbulent medium, respectively, and the
asterisk denotes the complex conjugate. The first aver-
age is the cross-spectral density function of the incident
field[11] and the second one introduces the influence of
the turbulence which can be expressed as

〈exp[ψ∗(ρ,ρ0, z) + ψ(ρ,ρ′
0, z)]〉

= exp{−4π2k2z

∫ 1

0

∫ ∞

0

κΦn(κ)

×[1 − J0(κξ|ρ0 − ρ′
0|)]dκdξ}, (3)

where Φn is the spatial power spectrum of the refractive-
index fluctuations of the turbulent medium and J0 is the
Bessel function of the first kind and zero order.

The expression of the mean square width of the beam
can be given as[4]

ρ2(z) = σ2
I + σ2

J · z2 + F2 · z3. (4)

It can be seen from Eq. (4) that the beam spreading
in turbulence is composed of three terms. The quan-
tity σI in the first term is the normalized root-mean-
square (RMS) width of the intensity in the source plane,
which characterizes the effective source size[11], and the
quantity σJ in the second term represents the normal-
ized RMS width of the power J radiated by the source
per unit solid angle, which is a measure of the angular
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spread of the beam in free space. Both of them represent
the diffractive spreading of the PCB in free space, while
the third term shows the turbulence contribution. The
quantity F2 describes the influence of turbulence.

According to the Eq. (4), one can study the beam
spreading behavior in atmosphere turbulence. Gbur et
al.[4] have introduced a quantity zT to quantify the effect
of the turbulence, which is defined as the distance at
which the spreading due to the turbulent medium ac-
counts for 10% of the magnitude of ρ2(z)

ρ2(zT)turb − ρ2(zT)free
ρ2(zT)turb

=
1
10
, (5)

where ρ2(zT)turb is given by the Eq. (4) and ρ2(zT)free is
given by the first two terms of the Eq. (4). In order to de-
termine the value of zT, simplifications have been made
by neglecting either the first term or the second term,
respectively, for the different kinds of turbulences with
two different scales. Their results only provide an ap-
proximation to the real case. Here we give the complete
solution of Eq. (5) in zT by employing the mathemat-
ical manipulations for cubic equation and the Cardano
formula, which is expressed in the form

zT =
3

√
−(

b3

27a3
+

d

2a
) +

√
b3d

27a4
+

d2

4a2

+
3

√
−(

b3

27a3
+

d

2a
) −

√
b3d

27a4
+

d2

4a2
− b

3a
, (6)

with

a = 9F2, b = −σ2
J , d = −σ2

I ,

where a, b, and d are just the mathematical symbols that
appear in the calculation. For the beams generated by
Gaussian Schell-model sources[11] and the Tatarskii spec-
trum of the turbulence model[9], one has

σ2
I =

ω2
0

2
, σ2

J =
2
k2

(
1
ω2

0

+
1
σ2

μ

), F2 = 1.095C2
nl

−1/3
0 , (7)

where ω0 is the minimum spot size and σμ is the source
coherence length that characterizes the effective spectral
coherence width of the source[11]. The quantities C2

n and
l0 are the structure parameter of the index of refraction
and the inner scale of turbulence, whose typical values
are 10−14 m−2/3 and 0.01 m, respectively[10]. We use θS
to describe the angular spreading in free space replacing
the quantity σJ in the remainder of this paper because
the former is easy to be understood.

For a given effective source size σI , both zT and θS
decrease with increasing σμ. To characterize the both
parameters, we introduce a new factor M to describe the
similarity between the behaviors of the PCB propagating
through turbulence and that of the fully spatially coher-
ent beam, which is defined as

M =
θS/zT
θSC/zTC

, (8)

where the numerator θS/zT represents the ratio of θS
to zT for the PCB while the denominator θSC/zTC de-
notes such ratio for the fully spatially coherent beam.
The quantities θSC and zTC denote the free space angular
spreading and turbulence resistance for a fully spatially
coherent beam, respectively. The factor M can also be
written as

M =
θS
θSC

· zTC

zT
=
M1

M2
, (9)

in which M1 = θS/θSC and M2 = zT/zTC respectively
represent the ratios of θS and zT for the PCB to its coun-
terpart for a coherent laser beam. We plot the curves of
variations of M1, M2, and M with various σμ as shown
in Fig. 1. The source and conditional parameters used
in calculation are λ = 628 nm, ω0 = 0.01 m, C2

n = 10−14

m−2/3, and l0 = 0.01 m, and the value of σμ is ranged
from 0.001 to 0.05 m.

Evidently, it can be shown that there are two limiting
cases. One is the case of σμ closing to infinity, which
represents a spatially fully coherent source, while the
other is the case of σμ approaching to zero that means a
spatially incoherent source[11]. One can see from Fig. 1
that firstly the value of M1 is much greater than unity,
that is to say, θS for PCB is much larger than its coher-
ent counterpart θSC. The value of M1 decreases rapidly
with increasing value of σμ, but falls off slowly when
the value of σμ is over about 0.015 m, which means that
the behavior of the GSM beam is closing to its coherent
limiting case. Finally we get θS ≈ θSC and the value of
M1 equals to unity when the value of σμ equal to or is
much greater than that of σI .

The change of M2 indicated by Fig. 2 is similar to that
of M1. Since the PCB has longer zT than that of the
coherent laser beam, the value of M2 is also greater than
unity. The value of M2 decreases rapidly with the value
of σμ increasing, but drops slowly when the value of σμ

is over about 0.015 m. This phenomenon arises from the
fact that with the increase of coherent length the PCB
with higher coherence is less stable in turbulence than
one with lower coherence[6], which leads to a shorter zT.
The value of M2 is closing to unity when the coherent
length is arriving at its coherent limiting case.

Figure 3 shows the change of M that includes the in-
formation of both M1 and M2. It is shown that the
value of M increases rapidly with increasing σμ, starting
to decrease very slowly and finally approaches to unity.

Fig. 1. Variation of M1 with source coherence length σµ.
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Fig. 2. Variation of M2 with source coherence length σµ.

Fig. 3. Variation of M with source coherence length σµ.

After that the value of M keeps at unity regardless of the
further increment of σμ. Let us analyze why the change
of M differs from that of M1 and M2. As one can see
that both θS and zT for the PCB drop with increasing σμ.
However, the descending rate of θS is faster than that of
zT, which leads to increase numerator on the right side of
Eq. (9) and further causes the increment of M . However,
when the value of σμ is arriving at 0.012 m, the ratio of θS
to zT is closing to its coherent counterpart and the value
of M approximately equals to unity. That means the be-
havior of such PCB is similar to a spatially coherent laser.
Nevertheless, at this time both parameters still continu-
ously descend, in which the only difference is just that
θS keeps its descending rate while the descending rate
of zT becomes slow that can be seen from Figs. 1 and 2.
Therefore, the value of M keeps increasing and exceeds
unity that is the ideal value of M . When the value of σμ

arrives at about 0.018 m, the factor M has its maximum
value of about 1.015. After that, the descending rate of
θS becomes slow and is gradually synchronized with that
of zT. Then the value of θS/zT begins to decrease and
further the value of M starts to descend though its value
is still greater than unity. When σμ is enough large for
the PCB to be considered as a spatially fully coherent

laser, the values of θS and zT are approximately equal
to those of θSC and zTC, then the value of M equals to
unity.

In summary, the factor M we defined can be used to
describe the trends of the variations of θS and zT for PCB
case with the various source coherent lengths. One can
see from the above analysis that there exists a boundary
that is σμ = 0.018 m for given effective source size σI =
0.007 m and particulate turbulence spectrum Φn. With
increasing σμ, the decreasing rate of θS is generally faster
than that of zT when the value of σμ is less than 0.018
m, i.e., SθS > SzT , in which SθS and SzT represent the
decreasing rates of θS and zT with increasing σμ, respec-
tively. When the value of σμ is greater than 0.018 m, SθS

becomes slower and gradually approaching to SzT , and
finally one gets SθS ≈ SzT . Then the value of M equals
to unity and the beam can be treated as a spatially fully
coherent laser beam. The results we obtained are just un-
der such circumstances as given effective source size and
particulate turbulence spectrum as well as some fixed
corresponding parameters in the calculation on influence
of turbulence. Changing source and turbulence parame-
ters may give different boundaries of σμ. They character-
ize the same interesting phenomena on the PCB source
in despite of possible different values of boundary. The
result of this paper can be helpful for practical applica-
tions when a trade-off between the robust zT and the
smaller θS for PCB is required.
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